Matrix Reconstruction with Prescribed Diagonal Elements, Eigenvalues, and Singular Values

نویسندگان

  • SHENG-JHIH WU
  • MOODY T. CHU
چکیده

DIAGONAL ELEMENTS, EIGENVALUES, AND SINGULAR VALUES DRAFT AS OF April 30, 2013 SHENG-JHIH WU AND MOODY T. CHU Abstract. Diagonal entries and eigenvalues of a Hermitian matrix, diagonal entries and singular values of a general matrix, and eigenvalues and singular values of a general matrix satisfy necessarily some majorization relationships which turn out also to be sufficient conditions. The inverse problem of numerically reconstructing a matrix to satisfy any given set of data meeting one of these relationships has been solved. In this paper, we take one step further to construct a matrix satisfying prescribed diagonal elements, eigenvalues, and singular values simultaneously. Theory of the existence of such a matrix is established and a numerical method is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Constructing Matrices with Prescribed Singular Values and Diagonal Elements

Similar to the well known Schur Horn theorem that characterizes the relationship between the diagonal entries and the eigenvalues of a Hermitian matrix the Sing Thompson theorem characterizes the relationship between the diagonal en tries and the singular values of an arbitrary matrix It is noted in this paper that based on the induction principle such a matrix can be constructed numerically by...

متن کامل

Construction of matrices with prescribed singular values and eigenvalues

Two issues concerning the construction of square matrices with prescribed singular values and eigenvalues are addressed. First, a necessary and sufficient condition for the existence of an n × n complex matrix with n given nonnegative numbers as singular values and m(≤ n) given complex numbers to be m of the eigenvalues is determined. This extends the classical result of Weyl and Horn treating ...

متن کامل

On the mean density of complex eigenvalues for an ensemble of random matrices with prescribed singular values

Given any fixed N×N positive semi-definite diagonal matrix G ≥ 0 we derive the explicit formula for the density of complex eigenvalues for random matrices A of the form A = U √ G where the random unitary matrices U are distributed on the group U(N) according to the Haar measure.

متن کامل

Off-diagonal Submatrices of a Hermitian Matrix

A necessary and sufficient condition is given to a p × q complex matrix X to be an off-diagonal block of an n × n Hermitian matrix C with prescribed eigenvalues (in terms of the eigenvalues of C and singular values of X). The proof depends on some recent breakthroughs in the study of spectral inequalities on the sum of Hermitian matrices by Klyachko and Fulton. Some interesting geometrical prop...

متن کامل

Inequalities on the singular values ofan o - diagonal block of a Hermitian matrix

A majorization relating the singular values of an oo-diagonal block of a Hermitian matrix and its eigenvalues is obtained. This basic majorization inequality implies various new and existing results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013